где:r – заданное количество навигационных происшествий;
no – оценка математического ожидания ежегодного количества навигационных происшествий, равная среднему арифметическому количеству происшествий за один год (или за другой принятый период):
(5.2.5)
Для применения закона (5.2.4) необходимы данные о навигационных происшествиях за несколько лет (k = 5 … 10). При этом общее количество плавающих судов в течение года должно быть примерно одинаковым.
Критерием возможности использования закона Пуассона для прогнозирования навигационных происшествий является приближенное равенство no > D (n), где D (n) – дисперсия количества навигационных происшествий, случившихся за год. Проще всего она вычисляется по формуле размаха:
(5.3.6)
где:nmax и nmin – экстремальные значения количества ежегодных навигационных происшествий.
Достоинством статистического метода оценки навигационной безопасности плавания является его объективность, связанная с тем, что его показатели опираются на фактические данные о количестве случившихся навигационных происшествий. Этот метод позволяет анализировать состояние безопасности мореплавания в различных условиях и на этой основе совершенствовать навигационно-гидрографическое обеспечение судовождения.
К недостаткам статистического метода следует отнести его низкую оперативность, связанную с необходимостью накопления достаточно большого объема статистических данных о случившихся навигационных происшествиях. Учитывая, что навигационные происшествия – не система, а случаи, то сбор необходимой для анализа статистической информации производится, как правило, в течение нескольких лет.
Другой недостаток статистического метода состоит в том, что статистика навигационных происшествий учитывает их количество в тех или иных условиях плавания, но при этом она не соотнесена к фиксированным параметрам судовождения и поэтому исключает возможность глубокого структурного анализа происшествий с учетом конкретных факторов, обусловивших происшествие на том или ином судне.