Рис. 19. Проекции объема сигнала на плоскости
Наиболее широко в теории сигналов используются взаимные преобразования двух проекций: получение спектральной характеристики из известной зависимости амплитуды сигнала во времени и получение закона изменения формы сигнала во времени из известной спектральной характеристики.
Правила выражения одной характеристики сигнала через другую получены на основе преобразований Фурье и называются соответственно прямым (3) и обратным (4) преобразованиями Фурье:
Сигналы, передаваемые по каналу, могут быть представлены как одиночными импульсами, так и последовательностями импульсов с постоянным и переменным периодами следования.
Последовательности импульсов имеют следующие параметры (рис. 20): амплитуду Ат, длительность (ширину) импульсов τи тактовую частоту следования F = 1/T (круговую частоту, )положение (фазу) импульсов относительно тактовых точек tі= iТ, где i = 0, ± 1,±2, .
Рис.20. Характеристика последовательностей импульсов
Отношение периода следования импульсов к длительности называется скважностью
Эта величина также является характеристикой последовательности импульсов.
Если в канале связи передаются импульсы постоянного тока, их называют видеоимпульсами (рис. 21, а). Импульсы переменного тока принято называть радиоимпульсами (рис. 21, б).
Спектры сигналов, передаваемых одиночными импульсами или короткими сериями таких импульсов, существенно отличаются от спектров периодических сигналов.
Например, периодическая последовательность прямоугольных импульсов со скважностью, равной двум (рис. 22, a), достаточно хорошо описывается суммой первых трех гармоник, тогда как одиночный импульс (период бесконечен) для своего отражения требует непрерывного спектра гармонических колебаний.
Возрастание периода следования импульсов ведет к увеличению спектра частот, необходимых для их описания (рис. 22, б). Таким образом, любая последовательность импульсов может быть представлена суммой постоянной составляющей с амплитудой Аo и гармоник, кратных частоте повторения импульсов т.е. кратных основной гармонике (k = 1).
Для правильного восприятия импульсов на приемной стороне канал связи должен обеспечивать неискаженную передачу соответствующего спектра частот. При заданном объеме канала для согласования преобразуют объем сигналов.
Рис. 22. Спектры частот последовательности импульсов со скважностью, равной двум (а) и шести (6)