Основы построения систем. Способы передачи и анализ телемеханических сигналов

Транспорт » Основы построения систем. Способы передачи и анализ телемеханических сигналов

Страница 4

Рис. 10. Пересекающиеся и непересекающиеся множества и подмножества

Операторы и используются также для разбиения множества на ряд непересекающихся подмножеств (рис. 10,в) т.е. , еслидля, где 0 - знак пустого множества.

Для получения более удобных узких подмножеств обычно используют разбиения с помощью отношения эквивалентности, выражаемого следующими свойствами: х ~ х для любого х (свойство рефлексивности); х ~ у => у ~ х (симметрия); х ~ у и у ~ z => х (транзитивность).

Более общий способ установления отношений между элементами множеств состоит в отображении элементов одного множества на элементы другого по определенному правилу, т.е. отображение - это правило, по которому элементам множества S1 (рис.11) ставятся в соответствие элементы множества S2. Символически это записывается как f : , что означает у = f (х), , т.е. у - образ х в S 2 при отображении f.

Рис. 11. Отображение сигналов

При взаимно однозначных отображениях используют и обратное отображение S2 на S1, т.е. , а также составные или последовательные отображения (рис. 12), т.е.

Рис. 12. Составное отображение

Любое отношение эквивалентности может быть выражено как отображение, а любое отображение порождает отношение эквивалентности.

Наиболее широко применяемым в теории сигналов является отображение, называемое преобразованием Фурье:

(1)

где:

Обратное отображение задаётся соотношением:

(2.)

Соотношения (2.1) и (2.2) являются парой преобразований Фурье, причем первое из них выражает так называемую спектральную плотность сигнала

(частотный спектр).

Любой сигнал конечной длительности или периодический сигнал могут быть представлены совокупностью периодических (гармонических) составляющих (рис. 13) в соответствии с разложением в ряд Фурье.

Рис. 13. Представление сигналов гармоническими составляющими

Коэффициенты разложения определяются функционалами:

где:

Другим широко используемым способом представления любого сигнала является его представление временным рядом, т.е. конечным набором функций, описывающих интерполирующий импульс (рис. 14, а) при разных его смещениях по оси времени (рис. 14, б). Обычно такой импульс удовлетворяет условиям:

Страницы: 1 2 3 4 5 6 7 8 9

Навигация