По числу разрядов, используемых в кодовых комбинациях, коды могут быть равномерными и неравномерными, т.е. содержащими одинаковое или разное число элементов в комбинациях.
Непомехозащищенные коды (группа кодов с кодовым расстоянием d = 1) получили достаточно широкое распространение в телемеханических системах, несмотря на низкую помехозащищенность.
Наиболее известными представителями этой группы являются группы Морзе, Бодо, Грея, международный телеграфный и двоичнодесятичный коды.
В коде Морзе используются комбинации двух символов — точка и тире, разделяемые паузой. Длительности точки и паузы между элементами одной комбинации одинаковы, а длительность тире в 3 раза больше. Число элементов (и время передачи) в комбинациях колеблется в широких пределах, что является серьезным недостатком кода Морзе.
Код Бодо более удобен, так как он является равномерным и содержит пять элементов в каждой комбинации.
Для уменьшения влияния помех в отдельных разрядах при передаче цифровых данных используется код Грея, соседние комбинации в котором отличаются только в одном разряде. Такие коды широко применяют при передаче результатов телеизмерений.
Двоично-десятичные непомехозащищенные коды нашли применение в системах передачи данных и вычислительной технике. В этих кодах каждый десятичный разряд представляется четырехразрядной комбинацией двоичного кода. Например, цифра 1 представляется как 0001, а цифра 9 — как 1001. Нетрудно заметить, что запись многоразрядных десятичных цифр двоично-десятичным кодом поучается весьма громоздкой. Для сокращения числа разрядов используют различные приемы.
Помехозащищенные коды предполагают, что из множества различных слов (комбинаций) для использования выбраны только такие, для которых
. Выбор такого подпространства
с нужными свойствами из пространства сигналов
представляет собой задачу выбора кода, оптимального по какому-либо определенному критерию. Чаще всего таким критерием является именно кодовое расстояние d при ограничениях на число разрядов п и т. Широко используются следующие постановки задачи:
выбрать из множества заданное число М комбинаций с максимально возможным кодовым расстоянием d;
выбрать из множества максимальное число комбинаций
с заданным кодовым расстоянием d;
найти такой оператор, который однозначно трансформирует m-значные комбинации в п-значные () и обеспечивает максимальное кодовое расстояние для данного вида преобразований.
Наиболее широко используются в телемеханических системах коды, получаемые в результате линейных преобразований m -значных комбинаций в п-значные (), называемые поэтому линейными.
Линейное преобразование в пространстве X обладает следующими свойствами:
т.е.
где:- произвольные векторы из пространства X;
произвольные скалярные величины.
Множество всех линейных преобразований некоторого линейного пространства само является линейным пространством, в котором определены векторное сложение и умножение на скаляр: