Сообщения, подлежащие передаче по каналу связи, должны быть представлены в форме, наиболее удобной для передачи по данному каналу. Таким образом, подразумевается преобразование одного исходного пространства сигналов в эквивалентное ему. Подобное преобразование проходит в два этапа. Первоначально из избыточного множества сигналовследует выделить подмножество , содержащее М нужных сигналов. Затем их необходимо поставить в однозначное соответствие с исходными сигналами. Первый этап может быть осуществленразличными способами, а второй — М! Таким образом, общее число возможных правил кодирования .
Подмножество выбранное по любому из К правил, составляет код. По ГОСТ 26.014 — 81 код — совокупность условных сигналов, обозначающих дискретные сообщения.
Символическая запись сложного сигнала из подмножества представляет собой кодовую комбинацию (кодовую последовательность). Вид записи комбинации зависит от системы счисления, используемой для рассматриваемого кода, так как любая комбинация это число, записанное в определенной системе счисления.
Основание системы счисления состоит из конечного набора цифр (символов), из комбинаций которых может быть образовано любое
число. Так, основание наиболее привычной в обычной жизни десятичной системы счисления содержит 10 цифр (0 — 9), а основание наиболее распространенной в технике передачи и обработки данных двоичной системы составляют цифры 0 и 1.
Любое число в системе счисления с основанием х может быть представлено многочленом:
где: a — знаки основания от 0 до х - 1.
Например, десятичное число 169 в двоичной системе записывается так:
или
F(х) = 10101001
Обычно при записи двоичного числа в виде многочлена опускают члены с коэффициентом 0 и не пишут множители 1, т. е. для числа 169 получаем:
F(х) = х7 + х5 + х3 + 1.
Представление кодовых комбинаций в виде многочленов широко используется благодаря возможности проводить над ними обычные алгебраические операции при анализе свойств кода. Однако для сохранения заданного кодом числа разрядов при сложении любых комбинаций используется сложение по модулю 2, т.е. по следующим правилам:
Пространство сигналов, построенное в соответствии с этими требованиями, удовлетворяет метрике Хэмминга
Действительно, при использовании n разрядов в комбинации возможно всего комбинаций. Сложение любых двух (или большего числа) комбинаций по модулю 2 дает комбинацию из указанной совокупности. Данные коды называются систематическими. Если в коде используются всевозможные комбинации, то некоторые отличаются друг от друга только в одном разряде, т.е. по Хеммингу расстояние d=1. Такие коды являются непомехозащищенными, так как искажение какого-либо разряда помехами (любого происхождения) приводит к другой разрешенной комбинации.
Однако, если выбрать для использования только комбинации с расстоянием d=2, одиночные искажения в комбинациях легко обнаруживаются. Такая совокупность комбинаций будет уже представлять код с обнаружением одиночных ошибок. Коды с расстоянием d = 2 называются помехозащищенньми. Они подразделяются на две группы: коды с обнаружением ошибок (пассивная помехоустойчивость); коды с обнаружением и исправлением ошибок (активная помехоустойчивость), т.е. корректирующие коды.